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Magnetohydrodynamic flows generated in a semi-infinite viscous incompres- 
sible conducting fluid by the discharge of an electric current J, from a point on the 
infinite plane bounding the fluid develop singularities when J, exceeds a certain 
critical value. In  practical applications sometimes currents much in excess of 
the critical value of J, may be passed between electrodes before singularities 
appear in the velocity field. In  this paper we consider the flow field associated 
with some current distributions and attempt to provide an explanation for 
the discrepancy between theory and experiment. 

1. Introduction 
In  some welding problems, such as gas tungsten arc welding, an electric current 

is passed between two electrodes and the current lines diverge from the smaller 
electrode, usually the cathode, to the larger one, usually the anode (Eberhart & 
Seban 1966; Woods & Milner 1971). The Lorentz force set up by this current 
system and the associated magnetic field is rotational and thus it generates a 
flow field. Such a flow field has been observed, for example, by Woods & Milner. 
A very approximate analysis of the mathematics of this problem was performed 
by Maecker (1955). It must be emphasized, however, that it is the rotational part 
of the Lorentz force that drives these flows and not pressure gradients, as assumed 
by some authors. Shercliff (1970) investigated the flow field set up in an inviscid 
fluid by an electric current supplied through a small hole in the wall bounding 
the semi-infinite region occupied by the fluid, for the case where the effect of the 
velocity on the electromagnetic field is assumed negligible. 

The velocity field, corresponding to the inviscid case, considered by Shercliff 
is singular all along the axis of the discharge. It was shown by Sozou (1971) that 
when the fluid viscosity is taken into consideration the axial singularity in the 
velocity field disappears. The viscous flow field has a jet-like structure, similar 
to that occurring in a momentum jet emerging from a small hole in the wall 
bounding a semi-infinite fluid (Squire 1952), and when K = 2J;/npv2 exceeds 
300.1, it develops singularities and breaks down. Here J, is the total current dis- 
charged, p is the fluid density and v the coefficient of kinematic viscosity. Thus 
for a given fluid there is a limit to the magnitude of the current which may be dis- 
charged before the velocity field breaks down. The breakdown of the velocity 
field may be regarded as turbulence. It has been brought to the author's attention 



666 c. Sozou 

that occasionally electric currents of much larger magnitude than ( 150npv2)4 
may be passed between the electrodes before a breakdown of the velocity field is 
observed. It was shown by Sozou & English (1972) that when the parameter 
4nvc~, where is the conductivity of the fluid, is of order unity or larger the 
value of K a t  which the velocity field breaks down is considerably increased. In 
most practical applications, however, the parameter 4nvc~ is small and we must, 
therefore, look elsewhere for an adequate explanation of this discrepancy. 

This paper is an attempt to explain the discrepancy between theory and 
experiment. We fmt consider the case where the current is radial and uniformly 
distributed within a conical region about the axis of symmetry (and zero outside 
this region). The rotational part of the Lorentz force generates a velocity field 
in the conical region occupied by the current. This spreads into the rest of the 
fluid so that a t  the interface there is continuity of velocity and stress. Our 
calculations show that as the angle of the cone in which the current is discharged 
decreases so does the value of K at which the velocity field becomes singular. This 
modification, therefore, cannot provide the required explanation. This must be 
sought in the structure of the current discharge, that is, the force that drives the 
velocity field. 

2. Basic equations of the problem 
We consider a uniform incompressible fluid of densityp and kinematic viscosity 

v, occupying the semi-infinite region 0 < 8 < Qn- of a spherical polar co-ordinate 
system (r, 8,$). At 8 = in there is a fixed plane and at  the origin there is a current 
source supplying to the fluid region 0 < 8 < B0 an electric current J o  per unit 
time. We consider a steady state and assume that the current is purely radial 
and symmetric about the line B = 0, that is, we assume that the current density 
j is given by 

j = fJOfl(p)/27rr2, 

where p = cos8 and a prime denotes differentiation with respect to p. Such a 
configuration can, for example, be approximately set up by the discharge of a 
current, in a plasma or a liquid metal, from an infinitesimally small cathode to 
a much larger anode, with the plane of the electrodes perpendicular to the line 
joining their centres (Msecker 1955). Within the discharge, owing to ohmic 
heating, the temperature, and therefore the conductivity, is higher than in therest 
of the fluid and is variable. We need not, therefore, satisfy the equation V x j = 0. 

(1) 

For such a current system (Sozou 1971) 

f(1) - f ( l uo )  = 1, (2) 

(3) 

where po = 008 8,, and the magnetic field B is given by 

wheref(p) = f(po), for 0 6 p 6 po. 

B = 4 x 2JO[f(l) -f(P)I/r(l -p2 )4  

The velocity field v, defined in terms of a stream function $, is given by 



MHD flows generated by an electric current discharge 667 

where 

Here K = 2J;/7rpv2. On taking the curl of the momentum equation and making 
use of (I), (3), ( 4 )  and ( 5 ) ,  weobtain twofourth-order equations, one for 0 6 p < po 
and one for p 2 p,, which can be integrated three times to give 

( 6 4  

( 6  b )  

G 2 -  Z ( 1  -p2) GI- 4pG = K(Ap2+Bp +C), 

g2 - 2( 1 - p 2 )  g'- 4pg = K[ap'+ bp +c- 2F(p)], 

where A,  B, C, a, b and c are constants of integration and P is the expression 
obtained by integrating [f( 1) - j (p ) ] f ' (p ) / (  1 - p2 )  three times. The pressure p ,  
obtained by integrating the momentum equation, apart from an additive con- 
stant, is given by 

P = v2P(p)/r2, 

where 

The boundary conditions, enabling us to determine a,  b,  c, A ,  B and C ,  are zero 
velocity on p = 0, that is C = 0, $nite velocity along the axis p = 1, that is 

a+b+c-ZF(1) = 0, ( 5 )  

2a+b-2Pt(1) = 0, (9) 

and continuity of velocity and stress at  the interface, that is continuity of @, 
a$/ap, az$-/ap2 and P at p = p,. These conditions imply that 

+ bpo + c - 2F(po) = A/-$ + Bpo, 

Zapo + b - ZF'(p0) = ZApo + B, 

u - P"(,u~) = A .  

(10) 

( 1 1 )  

(12) 

(13)  

By the substitution 

c = - Z( 1 -p2) u'/u, g = - Z( 1 -p2) U'/U, 

( 6  a)  and ( 6  b )  are transformed into 

IC ' f  = 4( 1 (apz+bp+c-ZF)u. 

In  (14a) we have set C = 0. We solve (14a), by forward integration, subject to 
the boundary conditions u(0) = 1 and u'(0) = 0. We assume that ZL and u' are 
continuous a t  p = po and thence proceed to p = 1 with the solution of (14 b ) .  

For a given current distribution, that is, for a givenf(p), we can determine 
Pol) and from (8)-( 12)  the constants a, b, c, A and B. A numerical solution of 
(14) determines the flow field completely. For a current that is uniformly 
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0, ... 90 85 75 60 45 30 15 5 3 

K,  ... 300.1 251.0 177.9 117-4 81.3 71.5 63-6 61.4 61.2 

TABLE 1 .  Values of K,(So) for some So. 

distributed within the cone, that is, for the case where the ohmically heated 
discharge region has acquired constant temperature and conductivity, 

b = - 1 + [ - 1 + 2 log (L)] /( 1 -,u,)~, 
l+PO 

A =  +, B =  [ -3+4p , - A+ 410g (3]/~ -po)2 .  
1 +PO 

We have solved (14) for this case, determining for a particular 8, the corre- 
sponding critical value of K ,  K,.(B,). For a particular 19, when K exceeds K,(B,) 
the velocity field develops singularities. These singularities appear initially on 
the axis of symmetry and as K increases they are pushed into the rest of the fluid 
region (Sozou 1971). Table 1 shows values of K, for some 8,. Inspection of table 1 
shows that as 8, decreases so does the corresponding critical value of K .  

It is easy to show that K,(8,) + 0 as 0, -+ 0. Whenp, +- 1, the constant B -+ - 4 
(15) and ( l4a) reduces to 

I t  can be shown that nearp = 1 one of the solutions of the above equation is a 
1)ower series of the form a,( 1 - p)  -I- a,( 1 - p)2 + . . . , and the other solution behaves 
like 1 - &K( 1 - p) log ( 1 -p).  When we make use of these solutions and (13) 
n-e deduce that G'(p) + 00 as p,, p +- 1. 

U" = - Kpu/S( 1 - y )  (1  +,u)'. 

3. Discussion 
It is obvious, from table 1, that the above model cannot explain why in practice 

the velocit,y field breaks down at  K,  9 300. The intensity, and thus also the 
breakdown, of the flow field is directly related to the force generating it. The 
discrepancy concerning the velocity breakdown between the experimental and 
theoretical model must be ascribed to this force. In practice these discharges 
consist of an approximately cylindrical column of almost axial current, about the 
centre-line of the electrodes, surrounded by a more diffuse current having a sig- 
nificant non-axial component. Just below the anode the discharge broadens and 
assumes a bell shape (Nestor 1962; Eberhart & Seban 1966). The current in the 
central column and its associated magnetic field produce an almost irrotational 
component of Lorentz force which is balanced by the fluid pressure. Thus the 
rotational component of the Lorentz force that drives the velocity field is much 
less than that corresponding to a case where the current is purely radial such as 
that considered in the previous section. 

The main difference between theory and experiment is the assumption of a 
point source and a radial current uniform within a cone; this can be illustrated 
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by the following simple example. Consider an electric discharge J, between two 
equal circular electrodes perpendicular to the line joining their centres (in effect 
a cylindrical column of electrical current). In  this case the J x B force is irrota- 
tional and it simply modifies the hydrostatic pressure; it does not cause fluid 
motion. Now imagine that one of the electrodes is slightly larger than the other. 
The current lines will diverge a little and a small component of the J x B force will 
be rotational. This will induce a weak velocity field. It might look as though this 
is at variance with the theory of the previous section, showing that the velocity 
field generated by a current discharged in a semi-inhite fluid, into a conical 
region of small semi-vertical angle, will have singularities unless J,, is relatively 
small. This discrepancy is, of course, due to the fact that this configuration is 
substantially different from that of the theory, which is based on a current 
radiating from a point source into a conical region. If the smaller electrode is 
reduced in size the current lines will be more divergent and the rotational part 
of the J x B force and the associated velocity field will increase. This was con- 
firmed experimentally by Woods & Milner. In  one experiment they observed the 
velocity induced by various currents when their two electrodes had diameters of 
6 and 15 mm respectively. When they repeated the experiment with the size of the 
small electrode decreased to 3mm they found that the observed maximum 
velocity a t  any given current was about doubled. The more, of course, the small 
electrode is decreased the better the configuration set up will fit the theoretical 
model. 

It would be very difficult to construct an exact solution of the nonlinear prob- 
lem occurring in practice, and the velocity breakdown is caused by the nonlinear 
(inertia) terms. In order to indicate more clearly the interaction of the mntral 
column of current with that diverging between the electrodes and at the same time 
conserve our similarity method, we consider very briefly the case where J, is 
discharged partly as current radiating from the origin in the fluid region p > po 
and partly as a circular cylindrical column of current, which we represent by a line 
current I along 8 = 0. For this case the radial current will be given by 

j = F(J, - I)j’(p)/%r2, 
the magnetic field by 

B = 4 x v+ ( ~ ~ - 1 )  r m  -f(p)ii/r(l -p2)$ (17) 

( 1 8) 

and, in the region p > p,, 

V x (j x B) = 4 x 2(J0 - I )  {I + (J, - I )  cf( 1) - f (p ) ] } f / r r4 (  1 - ,u2)*. 

For simplicity we choosef = - (1 -p)Y(l  -po)2 and assume that 

J, - I e I (  1 -puo)2. 

Equation (18) can then be approximated by 

V x  (j x B) = $ x  4(J0-I )I (1-p) /n( l -p0)2r4( l - ,u2)6 .  (19) 

The analysis of the previous section holds for this model and the only difference 
is that X must now be defined not by 2Ji/n-pv2 but by 

K = 4(J0 - I )  I/npv2( 1 -/A,)’ < ~J%/~T/N’.  
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It is easy to see that for this particular model, where most of the current is dis- 
charged along the axis, a region of fluid about the axis is occupied by a stronger 
magnetic field than that corresponding to the model of $ 2 .  Yet, as explained 
above, since the major part of the Lorentz force associated with this current 
system is irrotational the force driving the velocity field is substantially smaller 
than that corresponding to the model of $2. Thus, for a given fluid (given p 
and v) and a given angle of discharge, the critical value of J i  for velocity break- 
down will be much larger than that derived from table 1. In the special case 
Jo = I the right-hand side of (18) is zero and no flow is generated. 

We suggest that the flow generated by the discharged current behaves approxi- 
mately as described in the preceding section but, since only part of the total 
current contributes to the force driving the velocity field, the fundamental 
parameter Ji/npv2 of the problem must be multiplied by a small factor h ( < 1). 
The value of h depends on the size and distance between the electrodes and must 
be determined experimentally. This suggestion is in agreement with observations 
by Woods & Milner. These authors made experiments with liquid metals and 
found that the intensity of the flow field is proportional to Jf. When the dis- 
charged current was of the order of 30A, they observed a double circulation 
(in an axial section, one eddy on either side of the centre-line of the electrodes). 
There was considerable difference in the intensity of the motion with different 
metals. This is to be expected since for a given Jo the velocity depends on the 
fluid density and kinematic viscosity. As the current was increased to the order 
of 100A the double circulation gave way to pure rotation which became more 
rapid at  higher currents. This may be regarded as the breakdown envisaged by our 
theory. 

The finite dimensions of the container in which the experiments were carried 
out, in contrast to the theoretical model, which was formulated for a semi- 
infinite fluid, influence the overall structure of the velocity field. In  practice the 
fluid particles circulate within the container, forming closed streamlines. I n  the 
theoretical model fluid is continuously drawn in from the region adjacent to  the 
plane and discharged from the region about the axis, with the fluid particles 
accelerating as they come in and slowing down as they pass through the point 
of their closest approach to the origin. As Jo increases so does the flow velocity. 
The eddy field in the container readjusts and intensifies, whereas in the theo- 
retical model the fluid particles are able to penetrate closer to the source before 
being deflected into the axial region, with the region of inflow increasing and that 
of outflow decreasing. 

When the flow field generated is weak, so that, in the momentum equation, the 
inertia terms are negligible, a very simple solution to this problem can be con- 
structed. It is easy to show that for the problem considered in the preceding 
section the linear solut,ion is 
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where the constants A ,  B, C, D, a, b and c are obtained from the boundary con- 
ditions of zero velocity along y = 0, that is, G(0)  = G'( 0) = 0) ; continuity of velo- 
city and stress at  p = po, that is, a t  y = p, 

g =  G, g ' = @ ,  g" = G", gill = GO!. 
2 

and finite velocity along y = 1, that is, g ( 1 )  = 0. After a little algebra these 
conditions give 

A = i ( 3  - 4,&0 +pi) + 2 log [*( 1 +yo)], B = - &( 1 -yo)', c = 0, = @, 

c = $po-log (1 +PO) - Q(l -po)'log (-) 1-P0 . 
1 +PO 
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